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CONTRACTOR REPORT

DYNAMICS SIMULATION MODEL FOR SPACE TETHERS

I. INTRODUCTION

The Momentum Exchange Electrodynamic Reboost (MXER) system is a rotating tether about
100 kilometers long in elliptical equatorial Earth orbit designed to catch payloads in LEO with its lower
end and throw the payloads to geosynchronous transfer orbit (GTO) or to Earth escape by releasing
the payloads at the top of the MXER rotation. To ensure successful rendezvous between the catcher at
the MXER tip and a payload in LEO, a high-fidelity model of the system dynamics and control must
be developed. This model must show that the MXER tether tip can be maneuvered precisely and at
the exact time to rendezvous with and catch a payload, to within meters of positional error and within
meters/second of velocity error, all at high tip acceleration.

This report deals with an investigation of the modeling of the MXER dynamics in order to pro-
vide an accurate enough representation of the MXER system and the environmental perturbations to
ensure that payloads can be reliably caught and released on accurate trajectories. This allows an evalua-
tion of the control requirements for MXER operations, the implications of operations in nonequatorial
orbits, and the use of electrodynamic forces in multiple rendezvous control. We examined the accuracy
of various models and the accuracy of environmental measurements required to predict the MXER tip
position after one orbit, but did not deal with the requirements of electrodynamic reboosting.



II. DYNAMIC MODEL AND PERTURBATION RESPONSES

To develop effective mathematical approaches to the accurate simulation of the dynamics of a
MXER tether system, we addressed two fundamental themes:

1. Identification of the MXER system dynamics and its responses to various perturbations, the relative
importance of perturbing factors and environmental unknowns, and the required accuracy of the
dynamic model; and

2. Based upon the understanding of the dynamic behavior of MXER, development and comparison of
different computational methods to identify the most effective approach to the simulation of MXER
dynamics.

The theory of pendular motions formulated in the book “Dynamics of Space Tether Systems”
(1993) by Beletsky and Levin was applied to a MXER system consisting of a number of point masses
connected with massive tethers of fixed lengths. Equations for determining eigenforms and eigen-
frequencies of a rapidly rotating tether system were derived, leading to the equations of the excitation of
eigenforms under small perturbations. Eigenforms and eigenfrequencies were computed, and the motion
of a the MXER system was developed as a combination of the orbital motion of the center of mass,
rotation about the center of mass, and vibrations about the line of rotation. This approach gives a very
effective and clear way to describe the dynamic responses to perturbations.

A reference (unperturbed) motion near the equatorial plane was defined that results in an ideal
rendezvous; the required integration accuracy was then determined for a typical rendezvous preparation
period of a day or a few days.

The perturbing gravitational forces on the tether system are partly caused by the fact that the
tether length is generally not small. After considering a number of analytical approaches, an expansion
in a form of a polynomial series was adopted to represent the gravitational perturbations on a tether sys-
tem of finite length.

The minimum number of terms in the gravitational field expansion needed to support high-
precision modeling of MXER dynamics was considered. It was determined that while this number is not
particularly large at the apogee, it increases dramatically at the perigee, with the amount of computation
increasing proportionally to the second power of the required order of the gravitational model. A rela-
tively simple practical formula was derived to determine the minimum required order of the gravita-
tional field as a function of the current geocentric radius. A similar formula was derived to evaluate the
minimum number of terms in the expansion of the gravitational perturbation force due to a finite (not
small) spatial span of the MXER system.



Assuming linear superposition, the dynamic response to each perturbation was analyzed, including
harmonics of the Earth gravitational field, interaction of the geomagnetic field with a sample current in
the tether, aerodynamics, solar pressure, tether temperature variations, creep, and mass loss, to provide a
richly detailed dynamic portrait of the system.

Based on the dynamic response study, we described the impact of each perturbation on the rendez-
vous accuracy and derive the accuracy requirements for each perturbation model. This analysis may also
suggest ways to compensate for environmental unknowns with in-flight measurements.

The model based on the modal decomposition allows us to calculate the position of the MXER
tether ends to the required accuracy of about 1 meter after one orbit. The results of this task, including a
detailed dynamic portrait of the system, its sensitivity to perturbations, and the model accuracy require-
ments, provide the necessary basis for finding effective computational schemes for MXER. The complete
analysis is shown in Appendix A.






III. DEVELOPMENT OF COMPUTATIONAL MODEL

The MXER dynamic model consists of multiple point masses connected in succession with
fixed-length uniform tethers. We investigated convergence, stability, error accumulation, minimum
number of nodes or modes, ways to compute external forces, optimal integration, maximum time step
and propagation speed. Special attention was paid to the stiffness of the system caused by a drastic dif-
ference between the longitudinal and transverse wave velocities. We then compared the advantages and
disadvantages of all methods and determined the most effective approach.

One of the benefits of the suggested analytical formulation is that it allows us to operate with
finite formulas, and to avoid integration of the gravitational forces along the tether on each simulation
step; this leads to a faster computational scheme. The minimum number of expansion terms for the
required accuracy was considered.

Suitable ways of incorporating non-gravitational forces into the high-precision modal-based
computational scheme were investigated. One of the goals was to avoid integration of the distributed
forces along the tether on each step. It was shown that a compact set of pre-computed coefficients can be
used to effectively account for distributed and concentrated forces with the required precision, assuming
that the environmental models are accurate. In test runs, the computational overhead of adding the per-
turbation forces was not significant.

The second model used modified Minakov’s equations, which are a form of second order partial
differential equations with respect to the tether tension. The advantage is that they allow easier separa-
tion of fast longitudinal oscillations from the slow transverse oscillations of the tether, and therefore,
they can be integrated with larger time steps.

To independently verify the results of both modal decomposition method and Minakov’s method,
a third model with lumped masses was developed.

The complete results of this simulation are presented in the two appendices. Assuming that the
environmental parameters are known to the required precision, the modal decomposition method proved
to be accurate enough to provide 9-10 digit precision in prediction of the MXER tether position over the
time of one orbit, providing accuracy on the order of 1 meter in the tip position. The results show that
these equations can be integrated with a time step of about 3—4 seconds of orbital time, taking only a few
seconds on a standard PC to propagate a solution over one orbit with 9-10 digit precision.



IV. C** DEMONSTRATION OF MODEL PERFORMANCE

Because of requirements for coding the equations of motion for MXER into NASA’s MXER
Simulation Program, we provided assistance in adapting the equations for coding at the MSFC. The
requirement was for the equations to be coded, checked, and documented as an additional part of the
contract. Output was provided as a text file representing a solution with predefined parameters.

We provided a computer source code from our results written as a Microsoft Visual C++ project
for a Win32 console application demonstrating computational techniques involved in our high precision
MXER simulation based on the modal decomposition. The source code was delivered in May of 2005,
and is a separate item from this final report.



V. RESULTS

The model based on the modal decomposition of motion was used to evaluate the effects of the
various perturbations on the transverse tip response. The results are shown in the table. The MXER sys-
tem is extremely sensitive to temperature variations and creep, with the responses to these perturbations
being 1-2 orders of magnitude higher than the others. Creep is due to the tether stress, and will be rela-
tively constant, but the temperature response will depend on the deterioration of the tether surface, cloud
cover on Earth, orbital motion and the rotation angle of MXER.

Table 1. Sensitivity to perturbations.

Perturbation Parameter Variation Transverse Tip
Response, Meters
Aerodynamic 5% 2
Ampere Forces 1mA
Solar Radiation Pressure 5% 1-4
Thermal Expansion 1K 163
Creep 2.4 m/day 41
Mass Loss 5-150 g/day <0.001

The MXER system exhibits another surprising aspect: there is a near resonance of the main trans-
verse mode U, and the frequency of the gravity gradient variation, which cycles twice every rotation of
the tether system about its center of mass, or 2Q. This is a long-term resonant effect, with the amplitude
changing gradually over multiple perigee passages. The maximum tip response builds to about 120
meters over five perigee passages, then decreases to nearly zero over the next five perigee passages.

A typical response is shown in Figure 1. This resonance is difficult to avoid by changing the spin
rate, because the transverse frequencies are proportional to Q.
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Figure 1. Transverse amplitude over twelve orbits.



VI. CONCLUSIONS AND RECOMMENDATIONS

The MXER dynamic system is very sensitive to perturbations, and is extremely sensitive to
length variations. The main environmental uncertainty is temperature, which causes the largest changes
in tip transverse position. It is therefore important that MXER have a very accurate estimation system,
and a very accurate control system. This will require the design of estimation and control algorithms
based on very accurate in-flight measurements of the distances between neighboring modules. This is a
challenging task, but the distance variations carry the signatures of all the dynamic processes, and will
form the basis for the control signals.
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NOMENCLATURE

A = first end-body
B = second end-body
C = center of mass of the tether system
E = longitudinal stiffness of the tether
Jo = moment of inertia of the tether system
L = total tether length
L =length of the k-th segment of the tether
m 4 = mass of the first end-body
mp = mass of the second end-body
my = embedded mass &
R = geocentric radius
Ry = mean radius of the Earth
R¢ = geocentric radius of the center of mass
s = arclength along the unstretched tether
T = tether tension
t = time
~ = tether elongation
p = tether mass per unit length
A = longitude
T = unit vector along the tether line
T, = direction of the imaginary straight tether line
{2 = rotational angular rate
(") = differentiation with respect to time

(") = differentiation with respect to the arclength



1. FORMULATION OF THE PROBLEM

In this study, we consider the dynamics of a spinning tether system in an
elliptical orbit in application to the Momentum Exchange Electrodynamic Reboost
system. Momentum exchange tether systems have been studied in a variety of ap-
plications since Hans Moravec’s early publication [1]. It has recently been suggested
that momentum exchange systems can be enhanced with electrodynamic reboost
between payload transfers [2-4].

The Momentum Exchange Electrodynamic Reboost system (MXER) has a
projected tether span of up to 100 km, and spins rapidly with a period of 6-7 min.
It is placed in an orbit with a low perigee of about 400 km and a high apogee of
about 8000 km. To capture a payload at a perigee rendezvous, within a window of a
few seconds, the motion of the system has to be predicted with very high precision,
having acceptable position errors on the order of 1 m.

While this level of precision is routinely achieved today for conventional (non-
tethered) satellites, it is much more difficult to achieve for a 100 km long flexible
tether system. It is the goal of this study to investigate theoretical aspects of the
dynamics and offer a practical approach to high precision dynamic modeling of a
typical momentum exchange tether system.

2. DYNAMIC MODEL AND EQUATIONS OF MOTION

For the purposes of this study, we will assume that the momentum exchange
system consists of two end-bodies 4 and B, modeled as point masses m 4 and msp,
respectively, and a number of embedded masses my, k = 1,..., K, connected with
tether segments of lengths Ly, as shown in Fig. 1. Mass m 4 can be counted as m,,
and mass mp as mg1. Segment Ly connects masses my and my1.

L, L, Ly

Mma m, m, my My Mg

Fig. 1. Structure of the momentum exchange tether system.
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All point masses and the masses of the tether segments are assumed to be
constant. Tether mass per unit length can vary along the tether.

Positions of the tether elements with respect to a non-rotating geocentric
reference frame OXY Z are defined by the geocentric radius R as a function of the
arclength s measured along the unstreched tether from A4 to B, and time t,

R = R(s,1),
Positions of the end masses and embedded masses are

R, =R(ss,t), Rp=R(sst), Ry=R(ss,0).

Rp

Ra

=]
w
w
o=
E D
=4
[¢]
o,
:

Fig. 2. Positions of the tether sy

The tension vector of a perfectly flexible tether is tangent to the tether line

T

where prime denotes differentiation with respect to the arclength s, and v is the
local tether elongation.

The tether tension can be expressed as a function of the elongation v, elon-
gation rate 7, temperature @, and other factors, such as creep history,

T=T(s1t77 0,...). (2)



Equations of motion of the tether system constitute a mix of ordinary and
partial differential equations [5]. The motion of the end masses and embedded
masses is described by the ordinary differential equations

mAf{A =Ts +maga+Fy
mp RB =-Tg +mpgp+Fs (3)
mi Ry =Ty — Tioe +megr + Fy

where dots denote differentiation with respect to time, g4, gz, and gj are the
gravity accelerations at points A, B, and k, respectively, F4, Fp, and F, are non-
gravitational forces acting on the end masses and embedded masses. The tether
tension vectors are taken at the following points: T, at point A, Ty at point B,
Ty at point k of segment L1, and Ty at point k of segment Ly.

The motion of the tether is described by the partial differential equation
pPR=T' +pg+F (4)

where dots denote differentiation with respect to time ¢, and primes denote differ-
entiation with respect to the arclength s, p is the tether mass per unit length, and
T is the tether tension.

3. GRAVITATIONAL FIELD MODEL

The gravitational field is a sum of the gravitational field of the Earth and
other celestial bodies, primarily, the Moon and the Sun.

The geopotential U is usually represented as
U= ERFi T;) mX::O (%) (Crm cosmA + Sy sinmA) Py (cos a), (5)

where pp is the gravitational constant of the Earth, Ry is the equatorial radius of
the Earth, R is the geocentric radius, A is the geographical longitude eastward from
Greenwich, « is the geocentric colatitude (the angle between the rotation axis of
the Earth and the geocentric radius of a point, & = 0 at the North Pole), P,,, are
normalized Legendre functions,

Py (cos o) = 5, P (cos a),

15
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»," 1s a norm,
x =1/2n 11, with m =0,

m 2(2n +1)(n — m)!
no (n +m)!

, with  m > 0,

and PT* are associated Legendre functions of degree n and order m,

m m/a AT 1 dn
PP() = (1— )™ Py (a), Pol2) = 5 (e?

dzm™ "

- 1)n,
P) =1,
Pl(cos a) = cos a,
Pl(cosa) =sina,
1 1
P)(cos o) = 2(3 cos2a +1) = 5(3cosza - 1),
3
P)(cosa) = 5 sin 2a = 3sin a cos a,
3
P}(cosa) = 5(1 — cos2a) = 3sin’a,
1 1
P)(cos a) = §(5 cosJa + Jcos ) = 5(5 cos® a — 3 cos a),

3
P} (cosa) = -8—(sina + 5sin3a) = —2—sin a(5cos’a — 1),

15
P(cosa) = —(cos a — cos 3a) = 15sin’a cos a,

4
15

P}(cosa) = 2(3 sin @ — sin 3a) = 15sin® o,

The components of the gravitational acceleration g = VU are

Lw w1 w
9r = OR’ o = R 0o’ Ir = Rsina )’

where gg is pointing along the geocentric radius, g, is pointing southward along
the meridian, and g, is pointing eastward along the parallel. In the geocentric axes

0XYZ,
9z = (gr cos¢@ + go sinp) cos A — gy sin A

gy = (gr cosp + gq sing) sin A + gy cos A
9= = gr Singp — go COSQ
where ¢ = /2 — « is the latitude.



To properly evaluate convergence, we should use a geopotential model of the

maximum available degree and order. An obvious choice is the Earth Gravity Model
EGMY96 [6], of degree and order 360.

According to this model, uy = 398600.4415 km?/sec?, Ry = 6378.1363 km,

and the normalized coefficients Crm and Snm are as follows:

C’o,o =1, 5—'0,0 — not used

0—'1,0 =0, .5_'1,0 — not used

Ci11 =0, S11=0,

Cao = —0.484165371736 - 1073, S20 — not used

Ca,1 = —0.186987635955 - 102, S2,1 = 0.119528012031 - 107,

Ca,2 = 0.243914352398 - 10~°, S2,2 = —0.140016683654 - 10~
Cs,0 = 0957254173792 - 107, S3,0 — not used

Cs,1 = 0.202998882184 - 1075, S3,1 = 0.248513158716 - 107,

Cs,2 = 0.904627768605 - 107, S3,2 = —0.619025944205 - 109,
Cs,3 = 0.721072657057 - 10~°, Ss,3 = 0.141435626958 - 10~°,
Cs60,350 = 0.183971631467 - 10710 S360,350 = —0.310123632209 - 1072°,
Css0,360 = —0.447516389678 - 10~ 2%, Ss60,360 = —0.830224945525 . 1019

Gravitational perturbations caused by the Earth tides can be described by
time dependent variations in the geopotential expansion coefficients [7].

Gravitational perturbations caused by a celestial body of mass M, located at
R, with respect to the geocentric axes OXY Z are described as

R,-R Rp>’ (6)

gy = G, (!Rp "R R

where G is the universal gravity constant, and R, = |R,|.
For most practical purposes and for all celestial bodies, except the Moon, the
linear approximation

GM,
gp = R3

[3ey(ep, R) — R, (7)

where e, = R, /R, is a unit vector of the direction to the celestial body, should be
adequate [7].

17
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4. STATIONARY ROTATION

If we disregard non-gravitational forces F in equations (3)-(4) and assume
that the tether is inextensible (v = |R'| = 1) and gravitational acceleration does
not vary along the tether (g = gc¢), then equations (3)—(4) will have a stationary
solution

T = T(s)1(t), R = Rc(t) + (s — s¢) T(t), (8)
where Ro(t) and 1(t) are determined from
Re = go, T=-071. (9)

Here, R is the radius-vector of the center of mass, moving as a point mass, g¢ is
the gravity acceleration at the center of mass, T is a unit vector along the tether line
rotating at a constant angular velocity Q in a fixed plane normal to Q, 2 = |Q],
sc 1s the arclength corresponding to the center of mass

1

B
S¢ = 7 (mASA + mpsp + zk:mkslc +/A psds), (10)

and M is the total mass of the tether system.

In the stationary motion (8)—(9), we have
R=Rc+(s—sc)T=gc— (s —sc) 22T

After substitutin

am

t

=
o
w
C
o
o,
o
=
o]
=
.o
=
ol
@]
o
e
jor
)
gt
Q
jm}
w
—
w
N’
P
N
g
g
o
o
=
=.
<
o
&
o+
[
-
Q
=
(=]
3
e

(11)

TB = mBQZ(sB — Sc),

Tt = Th— — mkgz(sk —8¢),

where the last equation defines tension increments associated with the embedded
masses mp.

The equilibrium tension is obtained by solving the first equation of (11) with
the initial condition 7" = T4 given by the second equation and incrementing the
tension at the points si, as described by the last equation of (11). The boundary



condition T' = T} given by third equation is always satisfied because of the definition
of the value s¢ (10) and the structure of equations (11).

In general, the equilibrium tension increases from the value T, at the end A
to its maximum value T¢ at the center of mass C, and then drops to the value T}
at the other end, as shown in Fig. 3.

To minimize mass, the tether should be tapered, with the linear density vary-
ing along the tether, p = p(s). Ideally, the tether should be equally stressed /strained
at all points,

T

where E is the longitudinal tether stiffness, and §, is the maximum allowed strain.
Condition (12) can be rewritten as

2, (13)

T = pv> 6., UE:\

y ¢

where v is the longitudinal wave velocity in the tether. Now, we can express the
linear density as a function of tension, p = Tv;% 6!, and substitute this relation
into the first equation of the boundary problem (11) to produce a boundary problem
for an ideal equally stressed/strained tether.

T (kN

60

40

20 /

/
/

UU i0 20 30 40 50 60 70 60 8 (km) 90

Fig. 3. Tension profile of a tether system with (a) and without (b) payload.
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In practice, the tether can be made of a number of uniform segments, approx-
imating the desired taper profile.

Typical tension profiles are shown in Fig. 3 for a 90 km tether system with
my4 = 250 kg, mp = 11000 kg, and 8 embedded masses m;, = 200 kg placed 10 km
apart. The tethers are made of Zylon and are uniform on each segment with a
maximum strain of §, = 0.01. The system spins at {2 = 0.8 deg/sec. In case (a),
the end mass A carries a 2500 kg payload, and there is no payload in case (b).

5. SMALL OSCILLATIONS AND EIGENFORMS

To study small oscillations of the tether system about the stationary rotation,
we introduce a rotating reference frame C¢n(, with the origin at the center of mass,
axis C'¢ aligned with the tether line, and axis C¢ aligned with the angular rate vector
Q, so that

T=(1,0,0), Q =(0,0, £2).

With respect to the rotating axes C¢n(, the stationary motion (8)—(9) is viewed as
a relative equilibrium.
Equations of small oscillations of the tether system about the relative equi-

librium are derived from (3)-(4),

p D(ér) = &§T',

m 4 D((SI'A) = 6TA,

mpg D((SI'B) = _6TB7

mE D(5I‘k) = 5T}C+ - 5Tk._,

(14)

where ér and 6T are deviations from the relative equilibrium, and D denotes the
linear expression

D(6t) = 6% +2Q x 8 + Q x (Q x ér),

in which derivatives are calculated with respect to the rotating axes Cén(.

Small oscillations (14) have two independent components. One is normal to
the tether line in the plane of the stationary rotation,

ér = (0, n, 0), §T = (0, Tn', 0),
and the other one is normal to the rotation plane
ér = (0, 0, ¢), §T = (0,0, TC").

There is no longitudinal component in the linear approximation for an inextensible
tether.



Equations of small in-plane oscillations take the form

p(fi— 2%n) = (Tn'),

m4 (74— 2°14) = (Tn') 4,

mp (ﬁB - QZTIB) = —(Tﬂl)m

mi (7ik — 2°m) = (T )kt — (T )=

(15)

After substituting n = Up(s) cos(§2,t) into (15), we arrive at the following eigen-
value problem,

(TUL) = —p(27 + 2*)U
(TU’II’L)A —Ma (Q-,zl+02)UnA7
16
(TU,,,_L)B mpg (02 +02)Un3, ( )
(TUL)e+ = (TUp )k ~ ma (02, + 2°) Uni,
Small out-of-plane oscillations are described by
p{=(1¢,
maCa = (T¢)a,
AGa ( )A (17)

mp 513 - —(TC')B,
mi Gk = (T¢ s — (T )=

After substituting { = Uy,(s) cos({2,t) into (17), we derive the following eigenvalue
problem,

(TU,) = —p 2, Un,

(TU!)a = —ma 022 Una, a8)
(TU!)g = mp 22 Upp,

(TUL )kt = (TUR)k— — mue 825, Uni

The eigenvalue problems (16) and (18) are very similar. They have the same
eigenfunctions U,(s), and their eigenfrequencies are bound by a simple relation,

220 =002, + 0. (19)

Analyzing the boundary problem (11) for the equilibrium tension and the
eigenvalue problems (16), (18), we note that the eigenforms do not depend on the
angular rate 2. Indeed, we can introduce a normalized equilibrium tension

T(s)
02

P(s) = (20)

21
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and rewrite equations (11) as

PI:_p(s—'SC)a

By = —mA(SA = Sc),

21
Py = mB(SB = Sc), ( )
Pk+ = Pk_ - mk(sk — sc),

while equations (16) and (18) can be reduced to
PU,) = ‘Pﬂvzz Un,
PU:,,)A = ﬁmAﬂ:_ U‘n-A,
(22)

(

(

(PU,IL)B = mpg ﬁi UnB’

(PUp)k+ = (PU,)k— — m B2 U,

where 3, are dimensionless eigenvalues. The resulting system of equations (21)-
(22) and its solutions do not depend on the angular rate 2.

The eigenfrequencies §2,,, and £2,,¢ can be expressed through the dimensionless
eigenvalues 3, as

oy =+/B2-110, §p¢ = Ball. (23)
The eigenvalue problem (21)-(22) has two trivial solutions,
Bo =0, Up =1, (24)

and
B =1, Uy =s—sc. (25)

The first solution simply reduces the right and the left parts of (22) to zero, while
the second solution reduces (22) to (21). Dynamically, solution (24) corresponds to
perturbations of the motion of the center of mass, while solution (25) corresponds
to variations of the angular rate and direction of the axis of the stationary rotation.

The trivial solutions are followed by an infinite series of solutions {3,, U},

n =2,3,..., which constitute an orthogonal basis with the orthogonality condition
(Ui, Uj) =0, L # I (26)
where
B
(Ui, Uj) = mA(Uin)A + mB(Uin)B = ka(Uin)k +/ p(Uin)ds. (27)
k A
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Fig. 4. Lower eigenforms of a spinning tether system (n = 2, 3).

The orthogonality condition can also be expressed as
B
Irrt . .
/A PUU;ds =0, 1% 7. (28)

The norms of the eigenfunctions are defined as
Ul = (Un, Un). (29)

The norm of the first trivial eigenfunction (24) is equal to the total mass of
the tether system

B
||Uo||=M:mA+mB+ka+/ pds, (30)
k A

while the norm of the second trivial eigenfunction (25) is equal to the moment of
inertia about the center of mass,

10| =T =
? (31)

my(sa — sc)2 +mp(sp — 30)2 + ka (sk — sc)2 +/ p(s— sc)zds.
k A
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Fig. 5. Higher eigenforms of a spinning tether system (n = 8,9, 19).
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Also, the following relation for the eigenvalues can be derived from (22)

Some eigenforms are shown in Fig. 4-5 for the same parameters as in case (b)
of Fig. 3, namely, L = 90 km, m, = 250 kg, mp = 11000 kg, mi = 200 kg, k =
1,...,8, connected with 10 km long uniform tethers of the following masses: 318,
365, 406, 438, 461, 473, 475, 473, 460 kg. The corresponding nontrivial eigenvalues
(n=2,...,19) are given below

B, = 2.136, Bs = 10.497, Bia = 20.182,
Bs = 3.339, Bs = 11.355, Bis = 20.573,
Bs = 4.590, Bio = 12.414, Bie = 22.015,
Bs = 5.912, P11 = 15.549, Bir = 23.714,
Bs = 7.328, Bi2 = 18.020, Bis = 25.550,
B7 = 8.853, Bz = 19.320, Bro = 27.529.

Generally, the n-th form has n nodes. Note that while the lower modes (Fig. 4)
show smooth curves of average collective behavior, the higher modes (Fig. 5) exhibit
a more peculiar interplay between the tether and embedded mass dynamics.

6. DECOMPOSITION OF MOTION

Using eigenforms obtained from the solution of the boundary problem (21)
and the eigenvalue problem (22) for a simplified case of a stationary rotation, we can
represent solutions of the general equations (3)—(4) in the form of a series expansion

O

R(s,t) = Z qn(t) Un(s), (33)

n=0

where the term n = 0 (trivial form U, = 1) represents, in essence, the orbital motion
of the center of mass, qo = R¢(t), and the term n = 1 (trivial form U; = s — s¢)
describes a quasi-rigid rotation of an imaginary straight tether, q, = 7,(¢), where
T, is pointing, along the imaginary straight tether line, sa that.

R(s,1) = Ro(t) + (s = sc) (1) + 3 au(t) Un(s). (34)

25
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The higher order terms n > 2 represent tether oscillations about the imaginary
straight line drawn through the center of mass C' along vector T,. Kinematically,
they do not contribute to the displacement of the center of mass and the quasi-rigid
rotation because of the orthogonality conditions (26).

Note that the term with T, also describes a uniform elongation of the tether
system. If we disregard the higher order terms n > 2, then the tether elongation
7 = |R'| = |7;| = 71 will be the same for all tether elements.

Expression (33) yields similar kinematic and dynamic relations,

R(s,) =3 au®Unls)  Ris,t)= Y au(0)Un(s),  (35)

or in terms of (34),

F(&ﬂ:=Rcﬁ)+(s—8c)h(04-}:qﬂU)Uﬁ@%
2 (36)
R(s,t) = Re(t) + (s — so) %1 (t) + D dn(t) Un(s),

where the derivatives are calculated with respect to the non-rotating geocentric

frame OXY Z.

We can now substitute the second equation of (35) into the general equations
(3)-(4), multiply by U,, n = 0,1,2,..., and sum over all tether elements and point
masses. Applying the orthogonality conditions (26), we find that

(Qn + Gy + @,), n=01,2,..., (37)

&= 7]

where Q,, is reduced to an integral of tension,

B
Qn = TaUpa — TgUpnp + Z(Tk—{— - Tk—) Unk +/ T,Un ds
k

! (38)
B
= —/ T U] ds,
A
G, is expressed through the inner product (27),
Grn = (g, Un)
? (39)
=mua(gUn)a + mp(gUn)s + ka(g Un)i +/ p(gUx)ds,
. A



and @, is a generalized sum of non-gravitational forces,

B
®p = Fuls + Folns + 3 Fi Uy + / FU, ds. (40)
k A

The system of ordinary differential equations (37) is equivalent to the original
system of mixed partial and ordinary differential equations (3)-(4), because it is
derived through the general transformation of variables (33) without any simplifying
assumptions.

Using notations (34), and taking into account that [|Us]| = M and Q, vanishes
because Uy = 0, the motion of the center of mass is described by

Rc = le_f (Go + @y). (41)

Taking into account that ||U, || = Jo and U! = 1, the quasi-rigid rotation and
uniform elongation are described by

.1 B
T = — (Q1 —f’“ G1 + (Dl), Q1 = — / T dS. (42)
Jc A

According to (34), the tangent to the tether line is defined as

R' =1, + a7, AT = Z q.U.. (43)
n=2

Assuming that |aT| < |1,], the elongation can be approximated as

7 =R = V|ul2+2(1,a1) + [a1]2 & 71 + (€1, aT) = 1 + qun U,, (44)
n=2

where
T1

"= 111’7 € = 77 Gen = (e17qn)' (45)

1
The tether tension depends not only on the elongation, but also on temper-
ature, internal friction, creep history, and other factors. The following expression

can be adopted within a certain range of conditions,
T =T+ E(y-7)+ D, (46)

where T, is a reference tension, FE is the tether longitudinal stiffness, D is the

damping coefficient,
Y« =Y +e(t —to) + (O — 0y), (47)
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%Yo is the elongation under the reference tension Tt at time ¢, and a reference tem-
perature O, ¢ is the creep rate, o is the thermal expansion coeflicient, and @ is the
current temperature of the tether element. Other terms can be added as needed.

Substituting (44) into (46), we derive

T:Tl‘f‘Z(EQen‘f‘D‘jen)U:w T1:T0+E(71_7*)+D71? (48)

n=2
and then calculate

z£+$ g[@—%) qen+Déen] Uy, (49)

=

st 1

Retaining only linear terms in gy, the integral of tension Q, can now be
represented as

B B 0
an—/ ZR'ULdsz*/ %(71+quU,Q>U,st
k=2

A7 A
B o 0]
_/ (Tlel-l—ch U,'c) U, ds,
A k=2

where €, = T, /7, is a unit vector along the imaginary straight tether line and

(50)

&

] T
Cpn = Eel‘]en + DelQen + 7_1 (Qn - elQen), Jen = (ela qn)' (51)
1

Expression (50) can be significantly simplified in the ideal case of a perfectly
tapered tether. Let us define the tether reference state To(s) as a stationary rotation
at an angular rate {2, free of external torques, as described in Section 4, with the
exception that the tether is now elastic. Let us assume that the tether is perfectly
tapered so that all tether elements have the same elongation 7, under the stationary
tension T; at a given temperature @,. Then, similarly to (11), the equilibrium
tension profile can be determined from the boundary problem

T' = —p (s — 50) Yo,

T, = —mA-Qz(SA - 50)’)’07

) (52)
Tg =mpg? (SB - Sc)’)’Oa
Ter =Ty — mkﬂz(sk — $¢) Yo,
and similarly to (20), the equilibrium tension can be expressed as
Ty(s) = 227, P(s), (53)



where P(s) is the solution of the boundary problem (21).

Within the linear elasticity region, the longitudinal stiffness of the tether can
be related to its tension as

= kg D2 P(s),  kg= - To - (54)
-

With a strain on the order of v, — 1 ~ 0.01, the coefficient kg ~ 100.

The internal damping coefficient is usually considered directly proportional to
the longitudinal stiffness and inversely proportional to the frequency of oscillations
{2,,, which gives

D(s,$2,) = ES:U =, Qg P(s), UVp = — (55)

where 7 is a loss factor, on the order of 0.1 for braided tethers.

After these substitutions, the first term under the integral in formula (50)
takes the form

Tie; = Qgp(s)[’yo + kg (1 — %)+ 1 e = Qozp(s)ul T1,

where 1
Uy = jy*[’)’o—f'kE(’)ﬁ —7«) + 14 411, (56)
1

and the expansion coefficients become
Cp = \QSP(S) [kE elQen + Vn elq.en + Uy (qn - elQen)} .

If we assume that v, defined by (47) does not vary along the tether, i.c., the
creep rate, thermal expansion coefficient, and the temperature are the same for all
tether elements, then we can apply the orthogonality condition (28) along with the
eigenvalue relation (32) to derive

Q =-J¢ 03 u; Ty, (57)
forn =1 and
Q. = _HUnHﬂTZLQ(? [kE €1Gen + Vn €1Gen + Uy (qn - elqen)] (58)

forn =2,3,...

Now, we can rewrite the equation of quasi-rigid rotation (42) as

- 1
T + .(202 ULty = j— (G1 + (I)]_), (59)

C
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and the equations of tether oscillations (37),n=2,3,..., as

(Gn + @,).  (60)

qn+/63u0§ [kEeIQen"*’Vnelq.en‘*'ul (qn —elqen)] = Trr
HYn |

7. GRAVITATIONAL FORCES

The gravitational terms in the equations of motion (41), (59) and (60) are de-
fined by (39). The variation of the main component of the gravitational acceleration
g along the tether can be represented in the linear approximation in displacement
from the center of mass as

peR peRe HtE

8= " ¥ RY +E[36R(3R,r)“r], (61)

where p15 is the gravity constant of the Earth, ex = R¢/Rc is a unit vector along
the geocentric radius of the center of mass R, and

2(s8) = (s = ) Ti(t) + 3 u(t) Un(s) (62)

is the position vector relative to the center of mass.

Substituting expressions (61)—(62) into (39), and applying the orthogonality
conditions (27) and the norm definition (29), we obtain

peRe
Go~ - M R
G, ~ J¢ ’u_f [3eR (er,T1) —Tl], (63)
Ry
GTL%”URH_;;_?' [3eR(eR,qn)——qn], ’n:2,3’_..,
c

where M is the total mass of the system (30), and J. is the moment of inertia of
an imaginary system with an unstretched straight tether about the center of mass
defined by (31).

Note that in the linear approximation, the higher modes of oscillations do
not affect the motion of the center of mass and the quasi-rigid rotation about the
center of mass, and there is no practical need to include higher order terms in q. as
long as typical amplitudes of tether oscillations in a momentum exchange system
are relatively small. However, to achieve the required precision, it is necessary to
include higher order terms in (s — s¢) T;.



The variation of the main (Newtonian) term of the gravitational acceleration
along the line (s — s¢)T; drawn through the center of mass is given by

g:_MER:_#E[Rc+(S—Sc)T1] ] €r +ce; (64)
R3 Re+(s—sc)m® RZ (1 —2ze + £2)3/2
where ( )
Tl 8§ — S¢ ")’1
r = —(egp,e,), e, = — €= -——>1
( R 1) 1 71’ RC

As known in the theory of Legendre functions,

1 s .
(1—2ze +e2)1/2 2 Pale)er,
n=0

where P,(z) are Legendre polynomials. Differentiating this equation with respect
to = and dividing by ¢, we find that

]' C 1 n
(1 —2ze +2)3/2 2 Pra(@)er,
n=0

where P/ are the first derivatives of the Legendre polynomials.

After substituting this expression in (64), we obtain

s —sc)m

E= g L lenPate) te Pie)] | BB )

n=0

This series expansion converges rapidly because (s—sc)/Rc is typically small,
on the order of 0.01. To determine a minimum number of terms required for
practical computation, consider a simple inequality

L\" In (n/6)
— ] < 4, > —— L7 (66)
”(R) S Y0 ) o

where the left part estimates the contribution of the n-th term, L is the total tether
length, and 6 is a maximum acceptable relative error. Generally, all terms n > N,
where N is the minimum number satisfying (66), can be dropped. For a typical
momentum exchange system, it is sufficient to retain only 5 terms at the perigee,
and 4 terms at the apogee to achieve 10-digit precision (6 ~ 10719,

Expansion (65) can be also presented as

g:Zgg(s—sc)n, gg:—‘“ ) (67)

n=0
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where the derivatives with respect to s are calculated along the line (s — s¢)m
drawn through the center of mass. For the Newtonjan term, according to (65),

LE Y,
- R2+n [
C

er P y1(2) 4 e Pi(z)] (68)

g =

Note that expansion (67) can be treated more broadly to include all terms of
the standard representation of the Earth gravitational field, as well as the gravita-
tional fields of other celestial bodies.

Using (67), the generalized gravitational forces G (39) can be represented as
G, = Zgé I1];7 I: ={(s - sc)k’ Ur). (69)
k=0

Applying the orthogonality conditions (27), norm definition (29), and trivial
form properties (24)-(25), (30)—(31), we find that

=M, I;=0, IlI=Js, .. I'=1,

70
=0, IL=Jo, =L, .. I¥=I4., (70)

where I, are the high order moments,
B
In=mu(ss—sc)"+mp(sp—sc)" + ka (sk —sc)" +/ p(s—sc)"ds. (1)
A

We note also that
IO:I}L:O, n=23,... (72)

The practical benefit of using expansion (69) is that the quantities I* can be
precomputed to avoid integration of the gravitational force along the tether on each
step of solution propagation.

Another practical question is to estimate how many terms of the gravitational
field expansion (5) must be retained to achieve the required accuracy. The problem
is in the slow convergence of the series expansion at low altitudes when the ratio

Rgz/R is close to 1.
On average, according to the Kaula rule [7], the normalized geopotential co-
efficients Ch,,, and S,,.,, decrease in inverse proportion to the second power of their

degree,
- ~ 10—°

Onmasnm ~ 5 -

(73)

n



N
100 Ndeg

80

N
[
J-"J-'_"._‘_

AN

20 =

[ —

|

0
0 1000 2000 3000 4000 5000 6&00C H (km) 8000

100 Ndeg

80

o\ /

\\H

a 1 2 t (h) 3

Fig. 6. Minimum degree of the geopotential expansion for MXER.

Taking this empirical rule into account, the following inequality roughly esti-
mates the contribution of the higher degree terms to the acceleration of the center
of mass of a momentum exchange tether system,

—5 n 1 ‘15
() 56 o oz RRO1Y )

NG

n \{tc / ~ In (RC/RE

Numerical experiments show that a value of § ~ 10™? can be assumed for
MXER to achieve better than 1 m prediction accuracy over one orbit. The minimum
degree N that satisfies (74) is shown in Fig. 6 as a function of the geocentric radius
and flight time. We see that a lower degree model is adequate for the most part of
the orbit, but a model of a much higher degree is needed during perigee passages.
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8. SIMULATION APPROACH

Now, we can gather all equations, and apply formulas for the gravitational
forces derived in the previous section. The equation of motion of the center of mass
(41) takes the form

: 1 & o
Re=gc+ 37 D soly+ 47, (75)
k=2

the equation of the quasi-rigid rotation (59) can be rewritten as

1 & @
- 2 a1, 1 kok , P
T+ uT *go+JC ’;gcl—l + 7o (76)
and the equations of tether oscillation (37), n=2,3,..., can be reduced to

qn+ 13727,002 [kE €19en + Un €1 ¢en + Uy (qn - elQen)] =

=3 [3er(€er,qn) — qn| + k[,’f+ .
Ry Benlem ) =@l + iy > gl L+

As noted earlier, very few terms g& are needed to achieve the desired precision,
and quantities I¥ can be precomputed.

Equations (75)-(77) cleanly separate three dynamically different kinds of mo-
tions of the momentum exchange tether system. They are compact and flexible
in sense that the number of the gravitational terms and the number of the tether
oscillation modes can be selected depending on the desired accuracy. This opens a
way to building a very computationally effective simulator.

Preliminary testing for a typical momentum exchange system showed that
equations (75)-(77) can be integrated with a time step of about 4 seconds of orbital
time, and it takes only a few seconds on a standard issue PC to propagate a solution
over one orbit with 9-10 digit precision. More studies are needed to understand
possible limitations of this approach.
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NOMENCLATURE

A = first end-body
B = second end-body
C = center of mass of the tether system
E = longitudinal stiffness of the tether
F = non-gravitational forces
g = gravitational acceleration
Jo = moment of inertia of the tether system
L = total tether length
L = length of the k-th segment of the tether
m, = mass of the first end-body
my = mass of the second end-body
mj = embedded mass k
M = total mass of the tether system
R = geocentric radius-vector
Rg = mean radius of the Earth
Rc = geocentric radius of the center of mass
s = arclength along the unstretched tether
T = tether tension
T = tether tension vector
t = time
v = tether elongation
p = tether mass per unit length
T = unit vector along the tether line
T, = direction of the imaginary straight tether line
{2 = rotational angular rate
(") = differentiation with respect to time
(") = differentiation with respect to the arclength

(a,b) = scalar product of vectors a and b



1. EQUATIONS OF MOTION IN NEWTONIAN FORM

In the first part of this study [1], we considered the dynamics of a momentum
exchange system consisting of two end-bodies and a number of power stations con-
nected with tether segments. The end-bodies 4 and B and the power stations k
were modeled as point masses m4, mp, and my, respectively. The power stations
are connected with tether segments of lengths Ly, as shown in Fig. 1. The tether
segment L connects masses my and myy;.

l.(] Lj e Lt

L]

m,\ 111[ ml; s mk mk+| I‘l’lu

Fig. 1. Structure of the momentum exchange tether system.

All point masses and the masses of the tether segments are assumed to be
constant. Tether mass per unit length can vary along the tether.

Positions of the tether elements with respect to a non-rotating geocentric
reference frame OXY Z are defined by the geocentric radius R as a function of the
arclength s measured along the unstretched tether from A to B, and time £,

R = R(s,1),
Positions of the end masses and embedded masses are

R,q = R(Sﬁ,t), RB o R(SQ,t), Rk = R(Sk,t).

The tension vector T of a perfectly flexible tether is tangent to the tether line,

RI
T =171, e 7= Rl (1)

where T is a unit vector tangent to the tether line, prime denotes differentiation
with respect to the arclength s, and + is the local tether elongation.

The tether tension T can be expressed as a function of the elongation =,
elongation rate 4, temperature @, and other factors,

T=T(8,t,‘}","i’,@,---)- (2)
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Fig. 2. Positions of the tether system elements,

Equations of motion of the tether system derived in [1] include ordinary and
partial differential equations. The motion of the end masses and embedded masses
is described by the ordinary differential equations

mAﬁ-AzTA +tmaga+ Fyu
msRs = -T5 +mpgp + Fp (3)
my Ry = Tiy — Ty + mi ge + Fi

where dots denote differentiation with respect to time, g4, gs, and g; are the
gravity accelerations at points A, B, and k, respectively, while F,, Fp, and F,
are non-gravitational forces acting on the end masses and embedded masses. The
tether tension vectors are taken at the following points: T 4 at point 4, Tz at point
B, Ty at point k of segment Lj_;, and Ty at point k of segment L.

The motion of the tether is described by the partial differential equation
pR=T +pg+F (4)

where dots denote differentiation with respect to time ¢, and primes denote differ-
entiation with respect to the arclength s, p is the tether mass per unit length, and
T is the tether tension.

In the general case, the tether mass per unit length p can vary along the
tether, but we will concentrate on a more practical case when p is constant along
each tether segment connecting the end masses,

P = Pks k=1:"'!K' (5)



2. EQUATIONS OF MOTION IN MINAKOV’S FORM

Equations of motion in Minakov’s form, introduced into space tether dynamics
in [2], are obtained as follows. First, we differentiate equation (4) with respect to
the arclength s,

pﬁ' — 7" +pg +F.

Keeping in mind that R' =yt and T = T't, we find that
PYT+ 29T +4%) = T"1 4+ 2T'7 + T1" + pg' + F". (6)
By definition, the unit tangent vector T satisfies the condition
ool A= (7)

The first differentiation with respect to the arclength and time yields two orthogo-
nality conditions,
(t,7) =0, (T, T,) =0, (8)

while the second differentiation yields two kinematic relations,
(7, 7) = —(7,7), (r,7") = —(', 7). (9)

Multiplying equation (6) by vector T (scalar product) and taking into account
relations (7)-(9), we obtain a scalar equation of the second order with respect to
tension,

pY=py(1,7)=T"-T(v,7) + p(g',7) + (F', 7). (10)

From this equation, we express the second derivative of tension as
E* =T(T',T')+pﬁ'f—p‘y(';?,"i:')—p[g',’l’)—(Fr,T). (11)

Substituting expression (11) into equation (6), we arrive at the following equation
of the second order with respect to the unit tangent vector Ty

P+ 23T+ (1,1)] = T[v" + (7', 7))+ 2T'7 + pg' + F' — (pg' + F', 1) 7. (12)

This equation describes transverse motion of the tether and it has an obvious
wave structure with a transverse wave velocity equal to

T
vy = J; (13)
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Equation (10) describes longitudinal motion of the tether and it also has a
wave structure, To reveal this structure, we consider a case of linear elasticity,

T=T+E(y-7) (14)

where T; is a reference tension, E is the tether longitudinal stiffness, and Y. is
the equilibrium elongation under the reference tension To. According to (14), and
keeping in mind that -, may vary with time and temperature, we have

- & e

= E LT
After substituting this relation into equation (10), we can clearly see that this
equation has a wave structure with a longitudinal wave velocity equal to

Ve =

E

The longitudinal wave velocity (15) is much higher than the transverse wave
velocity (13), and therefore, the system of equations (10) and (12) is stiff in the sense
that equation (12) describes high frequency longitudinal oscillations, while equation
(10) describes transverse oscillations of much lower frequencies. The advantage of
Minakov’s form of the equations lies in the separation of the high and low frequency
wave structures in the tether dynamics equations.

In the Newtonian field,

_ k=R
S
the gravity gradient along the tether is calculated as
R'  3upR 1EY
g'=~" 5 + T (RR) = B [sen(ep, ) -, (16)

where pp is the gravitational constant of the Earth, ey = R /R is a unit vector along
the geocentric radius vector R, and R’ = v7. The corresponding gravitational term
in the equation of longitudinal motion (10) is reduced to

(8,7) = 5 13(en,™)? -1, (17)
while the respective gravitational term in the equation of transverse motion (12)
takes the form

g - (g, n)t= % 3(er,T)[er — (er,T)T] (18)



3. BOUNDARY CONDITIONS

The equations of tether motion must be complemented with boundary condi-
tions at the ends of each tether segment. To derive these boundary conditions, we
express the accelerations of the end masses 4 and B and the embedded masses mi

from equation (3)

. T,+F
RA - "_A_-ﬁ' +gd'_|
my

- ~T3+F
RB == _—-_'_'B—E +gB'|
Mp
N Ty — Tes + F.

R T
k g + Bk,

and from equation (4) at the ends of the tether segments,

- T+F

RA:( ) +gA.1
I A

- T™+F

e (520
[ B

-

This yields the following boundary conditions

T4 = Qu, T' |5 = Qs,
T |p- = Qu-, T+ = Quy,

where
Q.= £ S (Ta+ FA) - FlAa
Mg

et (—Tp +Fp)— F|s,
mpg

e
Qk“_mk

Quy =22 (1, — Ty + Fi) — Fle+.
m

(Tk.|. — T~ ‘|‘Fk) ~Fle-,

T+ F ™+ F
,1,:( ) +gk=( ) + .
P bt P R

(19)

(20)

Note that the gravitational accelerations canceled out and are not included

in the boundary conditions.
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Keeping in mind that T' = Tt + T't', according to (1), we multiply each of
the relations (19) by the corresponding unit tangent vector T (scalar product) and
arrive at the following conditions

Tr!A = (QA;TA_]a T’|B = (QB,TB),

Tl = (Qioytis)y  T'lar = (Quesas), 2

Relations (21) serve as boundary conditions for equation (10) describing longitudi-
nal motion of the tether.

Substituting relations (21) into (19), we find boundary conditions for equation
(12) describing transverse motion of the tether,

= % [Qa — (Qa,Ta) T4,

1
T|s = Ty Qs — (Qs,78) T8,

: (22)
T'Ik— = 51,‘__ {Qk— o (Qk—sTk—)ch"]:

Tlet = Ti—+[Qk+ — (Qkt» Tt ) T -

The boundary conditions are simplified when the non-gravitational forces F
are neglected. The boundary conditions for the transverse motion of the tether are
reduced to

T’lﬁ =0,
T"B =0,
’ljlk._ - Pk; Zk-i (T’H- — x;,'t;,_), (23)
T Tk_.
i Pet Do e
o PR T (s Tht — Th=),

where
Hy = (Tki-y'rk-)a

while the boundary conditions for the longitudinal motion of the tether take the
form 2 4

Tl = =1, Tl = ——= T,

ma mpa 24)

Pr— ' P+ (

I = (6 Thy — Th-), ey = (Thy — 56 Ts—).

T



4. MOTION OF THE CENTER OF MASS

The equations of tether motion derived in the previous sections describe evo-
lution of the tether orientation and shape. They must be solved together with one
of the ordinary differential equations (3) describing the orbital motion of one of the
end masses or embedded masses, or with the equation of motion of the center of
mass

.. 1
R‘C == H (GD -+~ (Dn), (25]

where R is the geocentric radins vector of the center of mass, M is the total mass
of the tether system, G, is the sum of the gravitational forces

B
Gy =mags + mpgs + Z Megk + / pEds, (26]
k A

and @ is the sum of the non-gravitational forces acting on the tether system,

B
¢D=F,+FB+ZF;,+] F ds. (27)
k A

As shown in the first part of this report [1], the sum of the gravitational forces
can be represented as a series

(=]

@

Go= Mgz + ) g2L.+ -7, (28)
n=2

where g, is the gravitational acceleration at the center of mass, g4 are derivatives

of the gravitational acceleration along the “mean” tether line R = Ro+(s—sc)m

drawn through the center of mass,

and quantities I, represent the high order moments

B
In=m4 (84 — 8¢)" + mp (sp —so)" + ka (8x —8c)™ + / p(s—sc)"ds.
. A
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The direction of the “mean” tether line T, is defined as follows. As shown in
the first part of this report [1], the tether shape can be represented by the series

R(s,1) = Re(t) + (s~ s0) Ta(t) + 3 au(1) Un(s) (29)

n=2

where q,(t) are generalized coordinates and Un(s) are the eigenforms of tether
oscillations. Differentiating this equation with respect to the arclength, and keeping
in mind that R' = 47, we derive

T =T Y qa(t) UL (s). (30)

n=2

The orthogonality conditions for the cigenforms can be expressed as

B
]A PUU! ds =0, i# 4, (31)

where P = P(s) represents a normalized tension profile, defined as the solution to
the following boundary problem [1],

P = _p(s _39),
Pyi= —mA(SA - 30), (32]

Fp.= mB(SB o Sc);

.PJH. — Pk_ = m&(ak - Sc),

The first eigenform describes the rigid rotation U; = s — s, for which =1
Multiplying equation (30) by PU; = P, integrating over the entire tether length,
and applying the orthogonality conditions (31), we find that

B B
Tlf Pd.szf Pytds. (33)

A A

The integral of P, according to [1], is equal to the moment of inertia of the unde-
formed tether system about the center of mass

H
[ Pds=1wili= o =
% 34)

B (
my (84— Sc)z +mp(sp — 50)2 + zmk (s — 30)2 +/ pls— 30)245»
& A



and therefore, relation (33) can be rewritten as

1

B
Ty = J—f P"}’TdS. (35)
cCJA

Formula (35) defines the “mean” tether direction for any given tether shape under
the assumptions of the current formulation.

Knowing 7,, we can calculate derivatives (26). As shown in [1], the Newtonian
term of the gravitational field gives

n_ HBET
Bc = _Rg+“

ler Pl (2) + € Pl(x)] (36)

where ez = R¢/|R¢| is the unit vector of the geocentric direction to the center of
mass, 1 = |T1|, € = Ti /11, Pa(z) are Legendre polynomials, and z = —(eg, e,).

To close the system of equations, we need to find the geocentric positions of
all elements of the tether system. For a given tether shape, we know the relative
positions r = R — R4 of all elements, and from the definition of the center of mass,
we can find its relative position

1

e =

B
(mgrg — Z milx + [ pr ds). (37)
AVA hJ k JA .

Using this information, we can calculate the geocentric position of the end
point R4 = R¢ — ro and the geocentric positions of all other points of the tether
system R = R, +r.

5. QUASI-STATIC TENSION

The longitudinal oscillations of the tether system are directly affected by the
internal friction in the tether, while the transverse oscillations are are affected
indirectly, through a weak coupling with the longitudinal oscillations.

As discussed in [2], one way to model internal friction in the tether is to add
a term px%, where x is an effective damping coeflicient, to the left side of the equa-
tion of longitudinal motion (10). It is shown in [2] that the energy dissipation in
the tether can rapidly damp out high frequency longitudinal oscillations, and after
a short period of time the longitudinal motion becomes quasi-static. Tension vari-
ations in the quasi-static motion are induced by relatively slow transverse motions
and can be described by equation (11) without the term p¥,

T"=T (Tr= Tl] et | ("[’, T) s (g','l') - (Fr: T)' (38)
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At any given moment ¢, this equation can be treated as an ordinary differential
equation with respect to the tether tension 7. Along with the boundary conditions
(21), it defines the tether tension profile as a function of the dynamic state of the
tether, including the tether shape, elongation and the angular rate distribution
along the tether.

Similar to (24), the boundary conditions (21) can be presented as
T)a= 247, 4 £,
ma
T"B = "'EETB + fa,
mp

g = %(H&TH - T} + fu—,

(39)
Tlas = 257y, L)+ frt,
T

where 3
Fa= 2 (Fm TA:' - (F|A1TA)3
T4

fe= L (Fs,78) — (F|z,75),

mp
foe = %(Fk,u_) o 3 A, Y K
it = L (Fr,Tey) — (Flo 5 Tos )-
Mgy

As we see in relation (16), the gravity gradient g’ calculated along the tether
is proportional to the elongation v, g' = vg!. This is true for any gravitational
field, not only Newtonian. Also, it has been shown in (2] that the aerodynamic
and Ampere forces, as well as solar radiation pressure acting on a tether element
are proportional to the elongation, F = yF,. Formally, the gradient of these forces
F' will include quadratic terms in v because of the variation of the environmental
parameters along the tether, however, these terms can be linearized with respect
to small variations of elongation.

Under these assumptions, if we use the linear elasticity relation (14) between
the elongation and tension, then we will have

T=7+(T - T)/E, (40)

and equation (38) will be linear with respect to 7. The boundary conditions (39)
will also be linear with respect to 7.

The general solution of the linear boundary problem (38)-(39) at any given
moment ¢ can be represented as a sum of two solutions,

T(s,t) = To(s,t) + e Ty (s, ). (41)
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Solution T; is obtained as follows. We set T}, 4 to zero and determine T}, from
the first equation of the system (39),

Tcu. =0, To',a, = fa. (42)

Then, we integrate equation (38) with the initial conditions (42) over the first tether
segment and find Ty and T}  at the end of the segment. Now, we use the third
equation of the system (39) to find the tension at the beginning of the next tether
segment

1 '
Ter = - [Tk_ + E-f—m, s )]. (43)

We then substitute quantity (43) into the last equation of the system (39) to find
the derivative T}, at the beginning of the next segment.

This process is repeated until we arrive at the end B and determine the values
of Typ and T,. Generally, these values will not satisfy the second equation of the
system (39). We need solution T, to match the boundary condition at the end B.

Solution T is calculated as follows. We introduce a new system of equations
(38')~(39') which retains only terms linear in T from the original equations (38)-
(39). We set T}, to some reference tension s

TIA - Ts, (44)

find 7}, from the first equation of the homogeneous system (39'), and integrate the
homogeneous equation (38') over the first tether segment. We then use the third
and the last equation of system (39') to find T}, and Ty, at the beginning of the
next segment, and continue integration until we reach the end B.

Now, we can substitute the general form of solution (41) into the second
equation of (39) and find the coefficient ¢, from the following equation

P p
Typ + ;B;Toa +a (Tl'g I ;B;ﬂs) = fp. (45)

One of the major benefits of this approach is that we reduced the initially stiff
system of equations (10), (12) to a non-stiff system (12), (38) by abstracting from
the fast transient processes in longitudinal oscillations. This does not mean that
we neglected tether elongation, we only filtered out its high frequency components.

6. SIMULATION APPROACH

For a numerical solution, equations (12), (22), (38), (39) can be discretized
with respect to the arclength s. This will reduce the partial differential equation
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(12) to a set of ordinary differential equations at the discretization nodes. These
equations are complemented with the ordinary differential equation (25) describing
the motion of the center of mass,

The number of discretization nodes is determined by the required accuracy.
To get an idea of a typical number of nodes, let us consider a very simple model of
a string clamped at the ends A and B. Tts transverse oscillations are decribed by
the string equation

pit = T,

where p is the string mass per unit length, T is the tension, assumed constant
along the string, u = u(s, ) is the transverse displacement, dots denote differenti-
ation with respect to time ¢, and primes denote differentiation with respect to the
arclength s.

The boundary conditions, are, obviously,

u_.i:ttﬂ=0.

A discretized string equation looks as follows

2 Ukt1 — 2Up + Up_y
i

=
ag?

b

where v, = /T /p is the transverse wave velocity, uy is the transverse displacement
at the node k, as is the distance between the neighboring nodes,

L
r— -Jn-J-,
N is the number of nodes, and L is the length of the string.

Partial solutions representing the natural modes of oscillations are found in
the form

AS

uj = sin({2,1) sin(wné}), ne=12....

where {2, are the eigenfrequencies, and ¢, = k/N, k= 0,1,...,N.
Substituting this form of solution into the discretized string equation, we find
that the eigenfrequencies of the discretized problem are equal to

r 7T
v, ™ vy _mn
{2 ‘2NL e (w) TR E (1 24N2)'

The exact eigenefrequency obtained from the original partial differential equa-
tion is equal to
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The relative difference is

R WAt
2 T 24 (N ) '
Because of the difference in eigenefrequencies, the phase difference between
the simulated and exact solutions will accumulate with time as ap = (, — )t
If we need to simulate the excitation of the n-th mode with a relative accuracy &,
over a period of time af, then the difference between the eigenefrequencies must be
limited as
e o B
at

To satisfy this relation, the number of nodes must be at least
N> N v at
™ i
i 24L ¢,
For a typical momentum exchange system with L = 90 km and v =1 km/s,

it takes at least 125 nodes to maintain an accuracy of 1% for the first mode of
transverse oscillations over one 3-hour orbit.

If an explicit integration scheme is used, then the time step will be limited by
the condition of stability of the numerical solution. In general, this restriction has
a form of

at < k¢ min { dsi’},

1 Uy

where k; is a numeric coefficient depending on the implementation, as; are the
distances between the nodes, and v;; are the maximum transverse wave velocities
(13) between the corresponding nodes.

By comparison, in a lumped mass model, the time step is limited by

o
at =k, mjn{d ‘},

i Vei

where k. is a numeric coefficient depending on the implementation, and v,; are the
maximum longitudinal wave velocities (13) between the corresponding nodes.

The longitudinal wave velocity is much higher than the transverse wave ve-
locity, and therefore the time step will be much smaller. This is why simulations
based on the Minakov’s form of the equations of motion are much faster than those
based on lumped mass models.

Two numerical models were implemented, one using Minakov’s form of the
equations, and the other using a lumped mass model. With a sufficient number of
nodes, as explained above, the results of the simulations were consistent between
the models within the required accuracy. As expected, the Minakov’s type model
was by an order of magnitude faster than the lumped mass model.

o1



7. RESONANT EXCITATION

It has been noted in simulations that the transverse oscillations of a typical
momentum exchange system go through cycles of a long-term amplitude modula-
tion, when the amplitude first builds up during a number of consecutive perigee
passages, and then decreases again.

Fig. 3 shows a history of the transverse amplitude variations over the course
of twelve orbits. The amplitude profile is shown in light gray, while the perigee
passages are marked with black clusters underneath.
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Fig. 3. Resonant excitation of the transverse oscillations,

- We see that even without the initial excitation the amplitude of transverse
oscillations steadily grows during five perigee passages until it reaches a relatively
high level of over 120 m, stays at this level for another perigee passage, and then
steadily decreases during the next five perigee passages. This cycle repeats with
minor variations.

An in-depth analysis of this phenomenon based on the modal formulation de-
veloped in the first part of this report reveals that the mechanism of this excitation
is resonant in nature and is caused by a sharp tuning between the natural frequency
of the main mode of transverse oscillations U; and the frequency of the gravity gra-
dient variation, which cycles twice per every rotation of the tether system about
its center of mass.

This tuning is persistent in the sense that the parameters of the tether system
must be changed radically to get away from the resonance. In particular, changing
the spin rate has very little effect because the transverse frequencies are proportional
to the spin rate, as shown in [1].
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The modal formulation of Part I accurately describes the motion of the tether
system in general and the resonant excitation of transverse oscillations in particular,
when the term Q,, in the main modal equation (37) derived in Part I is used in its
general form (38). The simplifications of the term Q.. demonstrated for a special
case of an ideally tapered tether should remain restricted to this special case and
should not be applied in case when the MXER tether is not carrying the full load
for which it was designed.

For practical purposes, the modal solution requires very few modes and is
computed much faster than the numeric solutions based on the Minakov’s formu-
lation, not to mention lumped mass models.

8. SENSITIVITY TO NON-GRAVITATIONAL PERTURBATIONS

8.1. Method of Computation.

To evaluate the sensitivity of the motion of the momentum exchange system to non-
gravitational perturbations, we use the modal decomposition method described in
Part I of this study [1].

As shown in [1], the effect of non-gravitational forces on the excitation of the
eigenform U, is determined by a generalized force

B
"Dn . FAU'HA + FEUnB -+ Z Fk Unk +f F Uﬂ ds. (46)
ke A

It is computationally expensive to calculate the integral of F U,, over the entire
tether length on each step. To make this calculation more efficient, we will use the
following quadratic approximation on each tether segment s < 8 < 54,

F(s,t) = (267 — &) F(sx,1) + (1 — 4E)F(sk41/2,t) + (& + 26%) F(sk41,t),  (47)

where { = (s — s441/2)/(s1+1 — 1), and Skt1/2 = (S + Sk41)/2 is the middle of
the segment, so that —1/2 < £ < 1/2.

Using approximation (47), we have

B
f FU,ds = E Qnk, (48)
A k

where

k+1
an =/ FU‘R ds =
k
(225, — Tna) Fse, 1) + (Iny — 412,) F(8p41/2, 1) + (IL,, + 2I74) F(sk11,1),
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and

E+1

k+1 k41
W= Uads L= [T vgds, o1, - [ v
k k k

The coefficients I™ can be precomputed before a simulation run, and to
calculate the generalized forces (46), we would need to evaluate the environmental
parameters only at the locations of the end masses and embedded masses and at
the middle of each tether segment,

With typical parameters, the accuracy of this presentation of the generalized

non-gravitational forces meets or exceeds precision requirements for modeling the
dynamics of the momentum exchange system.

8.2, Aerodynamic Forces.

As shown in [2], the aerodynamic force acting on a tether segment can be approxi-
mated as

£ 4
F = —p,diy (h‘ X Vo ((1 + E) Va — gavr) + v (1 —e)lv,|(ve — v,)] ,  (49)
where d; is the tether diameter, p, is the air density, v, is the tether velocity relative
to the air, v, = (v,,T) 7 is the component of the velocity v, along the tether line,
and ¢ and v are small parameters, 0 < g,v < 0.1.

The aerodynamic forces acting on the end masses and the embedded masses
are calculated as for regular satellites [4].

For a Hoytether [5] consisting of separate strands kept apart from each other,
formula (49) must be applied to all individual strands. One must also take into
account the overshadowing of the strands. In general, a Hoytether will have a larger
total exposed area of the tether and a higher air drag.

With typical system parameters and Hoytethers having between 16 and 24
strands, it has been determined in numerical simulations that a 5% variation in the
aerodynamics forces due to air density variations or uncertainties of the aerody-
namic parameters of the tether will cause a 2 m shift of the tether tip A after one
orbit.

8.3. Ampere Forces,

The Ampere force acting on a tether segment can be represented as
F=IvytxB (50)

where [ is the electric current in the tether, and B is the geomagnetic induction
vector,
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Normally, Ampere forces should not be applied during a preparation for a
rendezvous, However, to evaluate the sensitivity to the variations of the Ampere
forces, we will consider a purely hypothetical situation when there is an electrical
“leak” in the system, which results in a very small alternate electric current of a
1 mA amplitude flowing in the conductive segments of the tether in the direction
of the EMF and modulated proportionally to the EMF. It was also assumed for
simplicity that the “leak” current shuts off at altitudes above 2000 km for the lack
of electrons.

It has been observed in simulations that this electric “leak” during the perigee
passage causes a 3 m shift of the tether tip A after one orbit.

8.4. Solar Radiation Pressure.

The force of the solar radiation pressure acting on a round tether can be approxi-
mated as [2]

4
F = —p,dyy|T X €] l(l + %) e, — Ex(e,,'r)'r , (51)

where e, is a unit vector of the direction to the Sun, p, is the solar radiation
pressure, and 3 is the reflection factor.

The solar radiation pressure forces acting on the end masses and the embedded
masses are calculated as for regular satellites [4].

For a Hoytether [5] consisting of separate strands kept apart from each other,
formula (51) must be applied to all individual strands, taking into account their
overshadowing. In general, a Hoytether will have a larger total exposed area of the
tether.

With typical system parameters and Hoytethers having between 16 and 24
strands, it has been determined in numerical simulations that a 5% variation in the
forces of solar radiation pressure due to uncertainties of the reflective and geometric
parameters of the tether will cause a 1 to 4 m shift of the tether tip A after one
orbit,

8.5. Thermal Expansion.

Thermal expansion changes the length of the tether segments and thus changes
the moment of inertia of the momentum exchange system. The variations of the
moment of inertia result in variations of the tether spin rate.

The moment of inertia is proportional to the second power of the average
elongation 7, , and in a simple case of a free rotation, when the angular momentum
is conserved, the angular velocity {2 satisfies the relation

%2 =71 (52)
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When the average elongation v, varies with the temperature @ as
M = Yo + a;a6, (53)

where oy is the thermal expansion coefficient, then the angular rate will vary as

If the average deviation of the actual temperature from the modeled temper-
ature is 40,, during a time at, then the angle of the tether in-plane orientation
will deviate by a? = af2,, at, and the transverse displacement of the tether end A4

will be estimated as 5 o
at LAC & - __gtd—m.n -QDAt LACa

Yo
where L 4 is the distance from the end A to the center of mass ',

According to (3], Zylon, a candidate tether material, has a negative thermal
expansion coeflicient of a; = —6 x 10~° 1/K. With a typical spin period of 6.3 min
and a distance from the end to the mass center of 75 km, we find that after one
orbital period of at = 3 hours, the tether end will drift away from its anticipated
position by about 163 m per each Kelvin of the average temperature deviation.
This sensitivity is attributed to the high spin rate £2;.

8.6. Creep.

The average elongation v, will gradually increase with time due to creep,
T = Yo + Geat, (54)

where a. is the creep coefficient. In the approximation (52), the average spin rate

will be dropping as

2av 0, = _2acnt
Yo Yo

and the deviation of the angle of the tether in-plane orientation will be growing as

{2,

af? = —

ac(at)?

Yo

al = —

/o

The transverse displacement of the tether end 4 will build up with time as

AI?LAC A — ﬁgo(dt)z LA(:,
Yo

where L 4 is the distance from the end A to the center of mass (.

56



As reported in [3], the creep coefficient . of Zylon-HM under high stress
is on the order of 107® 1/hour. For a 100-km tether, this will result in tether
elongation at a rate of 2.4 m/day. With a typical spin period of 6.3 min and a
distance from the end to the mass center of 75 km, we find that after one orbital
period of at = 3 hours, the tether end will drift away from its anticipated position
by about 41 m. For Zylon-AS, the creep coefficient and the tether end displacement
are 3 times higher. As with thermal expansion, this sensitivity is attributed to the
high spin rate (2.

8.7. Mass Loss,

There are several processes that will contribute to the variation of the mass of the
momentum exchange system:

(1) outgassing

(2) sublimation

(3) micrometeorite damage

(4) hollow cathode emission

(5) molecular deposition (mass addition)

While there is no reliable data on most of them, it has been estimated that a typical
momentum exchange system may lose between 5 and 150 grams of its mass per day.
As a result of this process, the center of mass of the tether system will be slowly
shifting along the tether.

Let us consider the motion of a system with a straight, quasi-rigid tether,
whose elements m; are positioned at points s; along the line

R; = Re + (3i — 80) T, (55)

where T is a unit vector, and subscript C' refers to the center of mass. By the
definition of the center of mass,

ng (3i —s¢c) =0. (56)

According to (56), when the masses of the elements m; change, the center of mass
slides along the tether at a rate of

o= 77 > i (si = s0), (57)

where M is the total mass of the tether system,

M = Zm;.

57



58

Differentiating (55) with respect to time, we obtain
Ri=Rc—8cT— 2807+ (8 — 30) 7. (58)
Multiplying (58) by m; and performing summation, we find that

Y miRi = M (Ro — 3o T — 25¢ 1), (59)

where the terms with T canceled out because of the definition of the center of mass
(56).

For each element of the system,
m;R; = T; + F; + W,, (60)

where T;, F;, and W; are the sums of all internal, external, and reactive forces
acting on this element. Substituting equations (60) for the individual elements into
(59), we arrive at the following equation of motion of the center of mass

o . | 1
Rc=38cT4+28cT+ o zi:(Ft- + W;). (61)

All internal forces T; cancel out after summation, as dictated by the Newton’s third
law. The terms with the derivatives of s¢ describe the perturbation of the orbital
motion because of the relocation of the center of mass.

Multiplying (58) by T (vector product) and performing summation, we find
that
JeQ = z i — 80)T % (Fi + W,), (62)

where J¢ is the moment of inertia about the center of mass
Jo= Zmi (si — sc)?,
;

and € is the angular velocity of the tether rotation
D=1xT

It is interesting to note that even though the moment of inertia Jc is changing
because of the mass loss, it does not directly result in the variation of the angular
velocity, unlike the case of creep and thermal expansion.

While the hollow cathodes are expected to create a small torque of reactive
forces W, it is not obvious that the other processes involved in the mass exchange



with the environment will be anisotropic enough to create any noticeable torque of
the reactive forces.

Assuming that the reactive torques are negligible, the gravitational field is

Newtonian, and the non-gravitational forces are small, the in-plane perturbation of
the orbit of the center of mass can be described, according to (61), as

2
6F — 2w édy —w by — (w2 B ;;f) dxr = 3o cos ¥ — 25, 12 sind,
i (63)

b + 2wz +w bz — (uz — %) by = $g sind + 25 §2 cosd,
where §x and 8y are the vertical and horizontal displacements of the, center of mass,
w is the orbital angular rate, {2 is the spin rate, and ¥ is the angle between the
tether and the local vertical. For a fast spinning tether, 2 > w, we have J == 24,
and the order of magnitude of the perturbation is estimated as

5z? + 8y* ~ L 2-l- 295 2
o 22 7]

These displacements are expected to be very small (less than a millimeter) because
of the fast spin and slow shift of the center of mass.

9. ESTIMATION AND CONTROL REQUIREMENTS

As shown in the previous section, the position of the tether tip in the momen-
tum exchange system is very sensitive to variations of the system and environmental
parameters, when considered from the standpoint of the rendezvous precision re-
quirements.

The variations producing the most impact on the tether tip positioning are
related to the lengths of the tether segments, as we have seen in the case of thermal
expansion and creep.

If the distances between the neighboring tethered modules could be measured
with an accuracy of a few millimeters, then we could use this informnation to sig-
nificantly improve the estimate of the current state of the momentum exchange
system.

Every dynamic process in the momentum exchange system, one way or an-
other, leaves its signature in the longitudinal motion of the tether. Using a detailed
dynamic model, we may be able translate a continuous stream of precise distance
measurements, combined with other data, into a reasonably accurate estimation of
the tether system state.
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Furthermore, using the information about the system state, we could com-
pensate for some unexpected (or unmodeled) deviations from the projected path.
In particular, deviations of the rotation about the center of mass could be corrected
by slightly varying the tether length(s) or changing the mass distribution of the end
bodies or power stations.

Given extremely short rendezvous windows with very fast relative motions,
and various inherent uncertainties of the environment, it is very clear that elaborate
estimation and control algorithms must be developed to make successful rendezvous
with the momentum exchange system possible.

10. CONCLUSIONS

The task of prediction of the motion of a momentum exchange system with
a 9-digit accuracy is extremely challenging, and it is relentlessly testing our ability
to gain fundamental insights into the nature of the tether dynamics in this system.

It has been shown that the modal decomposition approach developed in the
first part of this study is a very powerful and precise tool for the simulation of the
dynamics of momentum exchange tethers.

However, to get a prediction with the required accuracy using this tool, one
must have precise inputs, including the initial state, system parameters, and the
environmental models. In simulations, the tether tip positioning has been observed
to be quite sensitive to even small variations of the parameters involved in the
calculations.

It is therefore imperative that precise estimation and control algorithms be
developed to compensate for the inevitable uncertainties and support high precision
rendezvous.
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